Hemostatic Resuscitation in

Trauma

Joanna Davidson, MD 6/6/2012

Case of HM

- 28 yo M arrives CCH trauma bay 5/27/12 at 241 AM
- Restrained driver in low speed MVC after getting shot in the chest
- Arrived boarded and collared with a GCS of 9
- Primary survey significant for slow shallow labored breathing, blood pressure 70/30, HR 110
- Secondary survey significant for 2 GSW
 - 1 to the back just to the right of midline at T12 level
 - 1 to R anterior axilla

HM in the shock room

- Intubated for airway protection/failure to oxygenate
- Labs on arrival:
 - 7.14/22.3/72/7/BE -22
 - 6.7 \ 13/193 INR 1.22
 - 141 | 100 | 15

fibrinogen 242

AG33

3.3 | 8 | 1.6

- CXR- layering pleural effusion on $R \rightarrow CT$ placed
- MTP initiated
 - 6U pRBC
 - 6U FFP
- TXA given

Hemorrhage after trauma is the second most frequent cause of death, exceeded only by TBI, and remains the leading cause of potentially preventable and early inhospital deaths

crashingpatient.com

Massive Transfusion

- Defined as greater than 10 units of packed red blood cells (PRBCs) in a 24 hour period
- Replacement of total blood volume in 24 hours
- Replacement of 50% of total blood volume in less than 3 hours

When to initiate MTP

- Assessment of Blood Consumption Score (ABC Score)
 - ED SBP < 90
 - Penetrating trauma
 - HR >120 bpm
 - +FAST exam
 - 3= 45% need for MTP, 4= 100% need
- Mclaughlin Score- independent predictors of requiring MTP in battlefield
 - HR>105
 - SBP<110
 - pH<7.25
 - Hct<32%
- Senior clinician's discretion
- Thromboelastography/ROTEM

1:1:1

- Large military studies demonstrate that patients who receive higher FFP:RBC ratio have improved survival (Borgman et al)
- Demonstrated in civilian studies as well (Zink et al)
- Flaws exist in these studies
 - Survival bias
 - Retrospective
- Still most centers support 1:1
- FFP administration may have worse outcomes if MTP not required

Platelets (1:1:1)

- Age of platelets is important
- Room temperature
- ASA/plavix use

Level 1 How To with Sue

TXA

- Inhibits fibrinolysis, possible antiinflammatory effect
- MATTERS trial demonstrated benefits in military situations
- CRASH 2- massive RCT in civilian population
- Safe
- Cheap (\$100/gram)

Other concepts in damage control

- Permissive hypotension
- PCCs
- Recombinant FVII

Back to case of HM

- After 6 RBC and 6 FFP patient stable for CT scan
 4:18 AM ABG: 7.17/59/23/21/BE -7
- CT chest/abdomen: large right hepatic lobe laceration with active extravasation of contrast, large hemoperitoneum, large renal laceration with surrounding perinephric fluid collection

HM continued

- IR called in for embolization however when HM gets back from CT he is not so stable anymore
 - BP dropped precipitously to SBP 60s
 - 6AM ABG: 7.014/51/98/13/-18
- Additional 2U pRBC infused and patient taken to OR emergently

HM in the OR

- Operative report: "large amounts of arterial bleeding from right lobe of liver...vessel loop placed around hepatic artery occluding it. The patient was in extremis at this point and would not tolerate a trip to angiography suite for a more selective embolization of the artery due to patients temperature, coagulopathy, and worsening base deficit."
- OR input: 2000 cc crystalloid, 10 pRBC, 2 plts, 5 FFP
- 24 hour total blood products:
 - 22 RBCs
 - 19 FFP
 - 5 Platelets
 - TXA
 - Factor 7

HM ICU Day #9 (6/5/12)

- Patient continues to be intubated/sedated
- ARDS/TRALI
- Abdominal washout and TAWT performed
- Febrile/bacteremic

Resources

- McLaughlin DF, Niles SE, Salinas J, Perkins JG, Cox ED, Wade CE, Holcomb JB. A predictive model for massive transfusion in combat casualty patients. J Trauma. 2008 Feb;64(2 Suppl):S57-63; discussion S63. PubMed PMID: <u>18376173</u>.
- Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009 Feb;66(2):346-52. PubMed PMID: <u>19204506</u>.
- <u>http://emcrit.org/wp-content/uploads/resus-of-crit-ill-trauma-patients.pdf</u>
- <u>http://emcrit.org/podcasts/massive-transfusion-kenji/</u>
- Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. CRASH-2 trial collaborators. Lancet 2010; 376: 23–32

Resources

- The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. CRASH-2 trial collaborators. *Lancet* 2011; 377:1096-101.
- Curry N, Davis PW. "Whats new in resuscitation strategies for the patient with multiple trauma?" *Injury*, 2012. article in press.
- Morrison JJ, Dubose JJ, Ramusen TE, Midwinter MJ. "Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. J Trauma 2011; 71(1) Supplement S9
- <u>http://emcrit.org/podcasts/tranexamic-acid-trauma/</u>
- <u>http://lifeinthefastlane.com/2012/04/rr-in-the-fastlane-015/</u>

Thank you

- Dr. Nagy, Dr. Dennis, trauma staff
- All of the countless medical students, residents, attendings who never let me push patients so that this baby can continue to cook

